CSMA/CA



Carrier Sense Multiple Access with Collision Avoidance

Carrier sense multiple access with collision avoidance (CSMA/CA) was invented for wireless networks. Collisions are avoided through the use of CSMA/CA’s three strategies: the interframe space, the contention window, and acknowledgments,

Interframe Space (IFS)

 First, collisions are avoided by deferring transmission even if the channel is found idle. When an idle channel is found, the station does not send immediately. It waits for a period of time called the interframe space or IFS. Even though the channel may appear idle when it is sensed, a distant station may have already started transmitting. The distant station’s signal has not yet reached this station. The IFS time allows the front of the transmitted signal by the distant station to reach this station. After waiting an IFS time, if the channel is still idle, the station can send, but it still needs to wait a time equal to the contention window. The IFS variable can also be used to prioritize stations or frame types. For example, a station that is assigned a shorter IFS has a higher priority.

Contention Window.

The contention window is an amount of time divided into slots. A station that is ready to send chooses a random number of slots as its wait time. The number of slots in the window changes according to the binary exponential backoff strategy. This means that it is set to one slot the first time and then doubles each time the station cannot detect an idle channel after the IFS time. This is very similar to the p-persistent method except that a random outcome defines the number of slots taken by the waiting station. One interesting point about the contention window is that the station needs to sense the channel after each time slot. However, if the station finds the channel busy, it does not restart the process; it just stops the timer and restarts it when the channel is sensed as idle. This gives priority to the station with the longest waiting time.



Acknowledgment.

With all these precautions, there still may be a collision resulting in destroyed data. In addition, the data may be corrupted during the transmission. The positive acknowledgment and the time-out timer can help guarantee that the receiver has received the frame.

Frame Exchange Time Line

Below Figure shows the exchange of data and control frames in time.

1. Before sending a frame, the source station senses the medium by checking the energy level at the carrier frequency.

a. The channel uses a persistence strategy with backoff until the channel is idle.

b. After the station is found to be idle, the station waits for a period of time called the DCF interframe space (DIFS); then the station sends a control frame called the request to send (RTS).

2. After receiving the RTS and waiting a period of time called the short interframe space (SIFS), the destination station sends a control frame, called the clear to send (CTS), to the source station. This control frame indicates that the destination station is ready to receive data.



3. The source station sends data after waiting an amount of time equal to SIFS.

4. The destination station, after waiting an amount of time equal to SIFS, sends an acknowledgment to show that the frame has been received. Acknowledgment is needed in this protocol because the station does not have any means to check for the successful arrival of its data at the destination. On the other hand, the lack of collision in CSMA/CD is a kind of indication to the source that data have arrived.

Comments

Post a Comment